• SNS 글과 사진 분석해 맞춤형 장소 제공한다
    SNS 글과 사진 분석해 맞춤형 장소 제공한다
    KAIST 전산학부 이동만 교수팀, 단어, 사진 분석 알고리즘 개발
    • 이정민 기자
    • 승인 2017.08.29 17:07
    • 댓글 0
    이 기사를 공유합니다

    스마트 공간에서의 실시간 지능형 정보 추천을 위한 데이터 마이닝 핵심기술 개발 개요

    [굿모닝충청 이정민 기자] 소셜 네트워크 서비스(SNS)의 글과 사진을 분석, 사용자에게 맞춤형 장소를 제공하는 기술이 개발됐다.

    KAIST 전산학부 이동만 교수 연구팀은 이 같은 기술을 개발했다고 29일 밝혔다.

    이 연구는 기존 위치기반 장소 검색 및 추천 서비스의 검색 수준을 향상시켜 사용자들이 장소를 선택하는 기준을 다양하게 적용시킬 수 있다. 사용자의 특성을 반영한 장소 추천이 가능할 것으로 예상된다.

    맛집 추천 서비스, 소셜 커머스 등 위치를 기반으로 정보 검색 및 추천 서비스를 제공하는 업체들은 주로 고객의 후기를 수집하거나 직접 방문을 통해 경험한 내용을 토대로 음식점 혹은 매장을 평가한다.

    이는 비교적 정확한 정보를 제공하지만 시간적, 경제적 비용이 많이 소모된다.

    또 사용자 전체의 관심과 선택의 평균에 중점을 두기 때문에 사용자 개인의 특성을 충분히 고려하지 못한다는 한계가 있다.

    시간이 지날수록 사용자는 평균 중심의 예상 가능한 선택지를 추천받을 확률이 높아진다.

    따라서 같은 장소라도 사용자의 방문 목적이 다르기 때문에 이를 파악할 수 있는 추가적인 기능이 필요하다.

    이를 위해 기본 정보 외에도 실제 사람들이 각 장소에서 어떤 세부적 활동을 하며 공간을 소비했는지에 대한 데이터 수집이 필수적이다.

    연구팀은 이를 위해 SNS인 인스타그램에 올라온 사진과 텍스트 자료를 분석하는 알고리즘을 개발했다.

    기존에 존재하는 딥러닝 방식을 이용해 사진을 분석하는 기술과 연구팀이 새로 개발한 텍스트 분석 기술인 워드백(Wordbag) 기술을 결합했다. 이는 특정 상황이나 분위기에 사용되는 단어들을 분석하고 단어마다 가중치를 둬 분류하는 기술이다.

    연구팀은 '응용 프로그래밍 인터페이스'(API)에서 주요 연구 이슈에 따라 크게 4개의 세부 분야별 정보를 제공한다. ▲상위 장소 ▲상위 장소 내 세부 장소의 장소성 추론 ▲감성분석 기반의 장소 분위기 추론 ▲사용자와 장소성 간 연관성이 그것이다.

    연구팀의 API는 SNS에 존재하는 연구개발 대상으로 지정된 코엑스, 아이파크 몰 등 특정 상위 장소 및 그 내부의 세부장소에 대해 언급된 데이터를 분석해 행위, 방문자, 시간, 분위기 등 다양한 관점에서 공간의 활용 가능성을 제공한다.

    이는 같은 장소라도 사용자가 시간대, 목적에 따라 다르게 활용했던 이력이나 기존 서비스에서 제공이 어려웠던 분위기나 방문목적을 데이터로 수집할 수 있기 때문에 사용자의 의도에 따라 장소를 추천할 수 있다.

    이 교수는 “이 연구에서 개발된 API를 통해 기존의 위치기반 장소 검색 및 추천 서비스의 검색 수준을 향상시키고 방문자들의 트렌드 변화에 따라 자동으로 변화된 장소를 추천할 수 있다”고 말했다.

    이어 “기존 비정형 텍스트 데이터 분석의 한계를 극복하기 위해 사진과 텍스트를 동시에 분석해 공간에 대한 사회적 정보를 추론할 수 있어 현재의 위치기반 추천 서비스가 인공지능형 개인 비서 서비스로 도약하는 핵심 기술이 될 것”이라고 말했다.


  • 댓글삭제
    삭제한 댓글은 다시 복구할 수 없습니다.
    그래도 삭제하시겠습니까?
    댓글 0
    0 / 400
    댓글쓰기
    계정을 선택하시면 로그인·계정인증을 통해
    댓글을 남기실 수 있습니다.